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Abstract In this paper, we study non-uniformly expanding repellers constructed as the limit
sets for a non-uniformly expanding dynamical systems. We prove that given a Hölder con-
tinuous potential φ satisfying a summability condition, there exists non-lacunary Gibbs mea-
sure for φ, with positive Lyapunov exponents and infinitely many hyperbolic times almost
everywhere. Moreover, this non-lacunary Gibbs measure is an equilibrium measure for φ.

Keywords Gibbs measures · Equilibrium states · Thermodynamical formalism ·
Non-uniform expansion

1 Introduction

The study of relevant invariant measures has produced important developments in Dynami-
cal Systems along the second part of the 20th Century. In particular, arising from a beautiful
interplay between Physics and Mathematics, the Thermodynamical Formalism developed in
the late 60s and along 70s by Ruelle, Bowen, Sinai, Walters and Parry, among several others
important contributors, is one remarkable advance in the study of the Ergodic Theory of hy-
perbolic systems. Using a rich dictionary between expanding maps or axiom A systems and
the statistical mechanics of one dimensional lattices via Markov Partitions, they introduced
several important notions in Ergodic Theory brought from Physics, as the notion of Gibbs
measures and Pressure for a dynamical system. Roughly, given an dynamical system f and
a potential function φ, if we denote by Bε(n, x) the set of configurations y such f i(y) is in

Work partially supported by CAPES, CNPq, FAPESP, FAPEAL, and PRONEX/Faperj, Brazil.

V. Horita
Departamento de Matemática, IBILCE/UNESP, Rua Cristóvão Colombo 2265, 15054-000 S.J. Rio
Preto, SP, Brazil
e-mail: vhorita@ibilce.unesp.br

K. Oliveira (�)
Departamento de Matemática, UFAL, Campus A.C. Simões, s/n, 57072-090 Maceió, Alagoas, Brazil
e-mail: krerley@gmail.com

mailto:vhorita@ibilce.unesp.br
mailto:krerley@gmail.com


Non-lacunary Gibbs Measures for Certain Fractal Repellers 843

a neighborhood of size ε of f i(x) for values of i = 1,2, . . . , n, and by Snφ(x) the sum of
φ along the orbit of x of length n, the Gibbs measure μφ has an asymptotic distribution of
mass given by

μφ

(
Bε(n, x)

) ∼ eSnφ(x)−nP (φ) (1)

where the symbol ∼ means here that the quotient between these quantities differs by a
constant that does not depend on x or n, see (4) for details. This measure maximize the
free energy of the system, i.e., it is a maximum among all invariant probabilities for the
expression

hμ(f ) +
∫

φ dμ.

The maximum of the expression above coincides with the pressure P (φ) of φ, by the varia-
tional principle. Summarizing, the Gibbs measure is the unique equilibrium state for φ.

As a consequence of this theory, several important results were obtained for expanding
maps and hyperbolic diffeomorphisms. For example, for an expanding map, the asymptotic
distribution of periodic points is given by the Gibbs measure associated to the zero potential.
Another remarkable result is the existence and uniqueness of the physical measure, that
coincides with a Gibbs measure associated to the unstable Jacobian of f . If we assume that
the dynamical system has a limit set that is a uniform expanding conformal repeller, it is
possible to obtain dimensional estimates for this repeller using a special Gibbs distribution
associated to a zero for the called Bowen’s Equation for f .

Trying to extend this theory beyond the uniform hyperbolic setting, several interesting
results were obtained by many authors in a wide variety of situations. Bruin, Keller [2] and
Denker, Urbański [6], for special classes of transformations, such as interval maps, rational
functions of the sphere, and Hénon-like maps; Buzzi, Sarig [3, 4], Sarig [15], and Yuri [18],
for countable Markov shifts and piecewise expanding maps; and Leplaideur, Rios [10] for
“horseshoes with tangencies” at the boundary of hyperbolic systems, to mention just a few of
the most recent works. In [13], Oliveira and Viana proved existence and uniqueness of equi-
librium states using the notion of non-lacunary Gibbs measure, introduced there. Roughly,
a non-lacunary Gibbs measure is a probability that satisfies (1) for a sequence ni = ni(x) of
values of n, such that ni+1/ni → 1. The existence of such measures was studied in [16] and
[12]. However, the global picture is still very much incomplete.

In this paper we contribute a sufficient condition for existence of non-lacunary Gibbs
measure, applicable to a large class of non-uniformly expanding maps. Under weaker as-
sumptions on the potential than [13] and [16] (see condition (A2) in Sect. 2), we are able to
prove that the non-lacunary Gibbs measure is an equilibrium measure for φ. This provides a
broader class of potentials that admits equilibrium states and non-lacunary Gibbs measures
than [13] and [16]. Another important advance here is that we are constructing non-lacunary
Gibbs measures in (possibly) fractal sets, extending [13] in this aspect also.

Some examples that we have in mind are the non-uniformly expanding local diffeomor-
phisms of Alves, Bonatti, Viana [1] and Hopf-like bifurcations, studied in [8]. These bifur-
cations occur in several phenomena in applied science as in the Hodgkin-Huxley model for
nerve membrane, the Selkov model of glycolysis, the Belousov-Zhabotinsky reaction, the
Lorenz attractor and in the Brusselator, a simple chemical system. We are able to show in
[7] that in a Hopf-like bifurcation (fμ)μ, for parameters near the bifurcation, it is possible
to find an open set of values of γ in the family φγ (x) = −γ log |detDfμ(x)| in such a way
that φγ does not satisfy conditions in [13] or [16], but satisfy our hypothesis. We use this to
get dimensional estimates in the repeller arising from (fμ)μ.
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2 Statement of Results

2.1 Non-uniformly Expanding Maps with Holes

Here we describe the abstract model that we consider along this paper. Let f : M → M be
a map on a d-dimensional Riemannian manifold, d ≥ 1 such that

(A1) There exist a family of compact path-connected sets R = {R1, . . . ,Rm} in M , with
disjoint two-by-two interiors and with finite inner diameter, such that the restriction
of f to a neighborhood of each Ri is a C1 diffeomorphism onto some domain Wi . We
assume that for every j = 1,2, . . . ,m, if intRj ∩ Wi �= ∅ then Rj ⊂ Wi .

Define � as the repeller of f in R1 ∪ · · · ∪ Rm, i.e., � is the set of points whose forward
orbits never leaves R1 ∪ · · · ∪ Rm:

� = {x ∈ M : f n(x) ∈ R1 ∪ · · · ∪ Rm for every n ≥ 0}.

Given n ≥ 1, we call n-cylinder any set of the form

R(i0, . . . , in−1) = Ri0 ∩ f −1(Ri1) ∩ · · · ∩ f −n+1(Rin−1)

with i0, i1, . . . , in−1 in {1, . . . ,m}. The family of all n-cylinders is denoted by Rn. It is easy
to see that for each n ≥ 1 the set of all n-cylinders form a covering of the repeller �.

For each n ≥ 1 and i0, i1, . . . , in−1 in {1, . . . ,m}, we consider the average least expansion
for the cylinder R(i0, i1, . . . , in−1):

ψn(i0, i1, . . . , in−1) = 1

n

n∑

j=1

inf
x∈Cj

log
∥∥Df −1

(
f j (x)

)∥∥−1
,

where the infimum is taken over all x in Cj = R(i0, . . . , ij−1). Throughout, Df −i (f j (y)) is
to be understood as the inverse of the derivative Df i(f j−i (y)), for any y and j ≥ i. Note
that if

ψn(i0, i1, . . . , in−1) > c > 0 (2)

implies that the derivative Df n expands every vector:

‖Df −n(f n(x))‖ ≤
n∏

j=1

‖Df −1(f j (x))‖ ≤ e−cn for all x ∈ R(i0, . . . , in−1).

Denote by ω the lowest contraction rate in �:

ω = sup
x∈�

‖Df (x)−1‖

If ω < 1, � is a uniformly expanding repeller. In some applications, including Hopf bifur-
cations discussed at [8], we may have ω greater than 1 and close to 1. We assume here that
ω > 1, otherwise � is an expanding repeller.

Given a function φ : M → R, we write Snφ(x) = ∑n−1
j=0 φ(f j (x)) and if A is a subset of

M , we write Snφ(A) = supx∈A Snφ(x). We assume that φ is Hölder continuous and
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(A2) there exist c > 0 and c1 < P(φ)−d logω such that if Qn(c) denote the set of cylinders
such that ψn(i0, i1, . . . , in−1) ≤ c, for every large n, we have:

∑

C∈Qn(c)

eSnφ(C) ≤ ec1n. (3)

We fix c > 0 as in Hypothesis (A2) above. Let H be the subset of � of points of cylinders
that satisfy (2) for infinitely many n. That is

H =
⋂

k=1

⋃

n≥k

⎛

⎝
⋃

ψn(i0,...,in−1)>c

R(i0, . . . , in−1)

⎞

⎠ .

We recall that a measure μ is said a Gibbs measure for φ and a constant P , if there exists
K > 0 such that for μφ almost every point x ∈ �

K−1 ≤ μφ(Rn(x))

eSnφ(x)−nP (φ)
≤ K. (4)

In [13], the authors introduced the notion of non-lacunary Gibbs measure. They defined
a non-lacunary Gibbs measure (for φ and P ) as any measure μφ such that for almost every
point x ∈ �, (4) above holds for a sequence ni = ni(x) such that ni+1/ni converges to one.

Under more restrictive conditions on φ than ours, in [13] the authors were able to prove
that non-lacunary Gibbs measures exists and they are equilibrium states for f and φ. If μφ

denote a non-lacunary Gibbs measure, then

hμφ
(f ) +

∫
φ dμφ = P (φ).

Here, P (φ) is the pressure of φ and it is defined by

P (φ) = sup

{
hμ(f ) +

∫
φ dμ

}
, (5)

where the supremum is taken over all invariant probabilities. Now, we state the main result
in this paper:

Theorem A Let f : M → M be a C1 map satisfying (A1) and φ a Hölder continuous
potential satisfying (A2). If f is transitive on �, there exists a non-lacunary Gibbs measure
μφ for φ. Moreover, the support of μφ coincides with H and μφ is an equilibrium state of f .

Remark 2.1 In a recent preprint (see [11]), the author was able to prove that if P (φ) >

P�\H (φ) (see Sect. 3.2) and under the hypothesis that exists some conformal expanding
measure for φ (see Sect. 3.3), there exists a unique equilibrium measure for φ. In particular,
follows from our method and proofs, joint with this result, that the measure μφ above is the
unique equilibrium measure for φ.

3 Some Useful Tools

We devote this section to develop some tools that we use in the proof of Theorem A. The
first one is the notion of uniform expansion along orbits:
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3.1 Hyperbolic Times

Definition 3.1 We say that n ∈ N is a c-hyperbolic time for x ∈ M if there exists d > c such
that

j−1∏

k=0

‖Df (f n−k(x))−1‖ ≤ e−dj for every 1 ≤ j ≤ n.

Here, c is fixed and we just say hyperbolic time instead of c-hyperbolic time.

Given a partition of M , let Rn be the partition of M into length-n cylinders. For each
point x ∈ M we denote by Rn(x) ∈ Rn some atom that contains x.

Definition 3.2 We say that n is a hyperbolic time for a cylinder Rn ∈ Rn if n is a hyperbolic
time for every x ∈ Rn and in this case we say that Rn is a hyperbolic cylinder. We denote by
Rn

h the set of the cylinders Rn ∈ Rn for which n is a hyperbolic time and by Rh = ⋃
n≥1 Rn

h.

Next lemma is a consequence of Pliss’ Lemma:

Lemma 3.3 If R(i0, . . . , in−1) satisfy ψn(i0, . . . , in−1) > c, there exist a real number θ > 0
and integers numbers 1 ≤ n1 < . . . < nk ≤ n such that k ≥ θn and R(i0, . . . , ink−1) is a
c-hyperbolic cylinder.

Proof This is a direct consequence of Pliss’ Lemma. See [1] for a proof. �

The main property of a hyperbolic cylinder Rn is that inverse branches of f n contracts
distances uniformly on Rn. More precisely:

Lemma 3.4 If Rn ∈ Rn
h then for every x, y ∈ Rn and 1 ≤ j ≤ n

1. d(f n−j (x), f n−j (y)) ≤ e−jcd(f n(x), f n(y));
2. If φ is (C,α)-Hölder continuous, there exists a constant K1 that depends only on f and

C such that:

|Snφ(x) − Snφ(y)| ≤ K1d(f n(x), f n(y))α.

Proof See [13], Lemma 3.5. �

As a consequence of the result above, we obtain control of the Jacobian of f at a hyper-
bolic time:

Corollary 3.5 There exists K2 > 0 such if Rn ∈ Rn
h then for all x, y ∈ Rn

K−1
2 ≤ eSnφ(x)

eSnφ(y)
≤ K2.

Proof By Lemma 3.4 above, we have that

eSnφ(x)

eSnφ(y)
= eSnφ(y)−Snφ(x) ≤ eK1d(f n(x),f n(y))α .

Then we just need to choose K2 bigger than the sup{diam(Ri)}. The opposite inequality
holds in a similar fashion. �
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3.2 Pressure

In this section we study the relation between the pressure of a potential and the set H . We
will see that if φ satisfy (A2), the supremum defined at (5) can be considered as a supremum
over measures supported on H .

One extra complication here is the fact that we need to use the notion of pressure relative
to H . To define PH (φ), the pressure of φ relative to H , we need to consider a more general
definition of pressure that include that non-compact case, since H is a non-compact invariant
set.

To define this notion, let X be any subset of � that is invariant under f , and let U be a
cover of �. To each finite sequence (U0, . . . ,Un−1) of elements of U , associate the set

U = {x ∈ � : x ∈ U0, f (x) ∈ U1, . . . , f
n−1(x) ∈ Un−1} (6)

and write n(U) = n. Given any N ≥ 1, define SN(U ) to be the family of all sets U of this
form, for all values of n(U) ≥ N .

Given any α ∈ R, consider the number

mX(φ,α, U ,N) = inf
G

∑

U∈G

exp
(
Sn(U)φ(U) − αn(U)

)
(7)

where the infimum is taken over all families G ⊂ SN(U ) that cover X. We have a monotone
non-decreasing sequence in N . Define

mX(φ,α, U ) = lim
N→∞

mX(φ,α, U ,N).

It is not difficult to see that there exists a unique real number PX(φ, U ) satisfying

PX(φ, U ) = inf{α : mX(φ,α, U ) = 0}
= sup{α : mX(φ,α, U ) = +∞}.

Definition 3.6 The pressure of f for φ relative to X is

PX(φ) = lim
diam U →0

PX(φ, U ).

Theorem 11.1 in [14] states that the limit does exist, that is, given any sequence of covers
Uk of X with diameter going to zero, PX(f,φ, Uk) converges and the limit does not depend
on the choice of the sequence.

Let IX denote the set of invariant probability measures η such that η(X) = 1. If X is a
compact set then (see [17, Theorem 9.10] or [14, Theorem A2.1])

PX(φ) = sup

{
hη(f ) +

∫
φ dη : η ∈ IX

}
.

This applies, in particular, when X = �. We just write P (φ) to mean P�(φ). In the general
non-compact case one inequality remains true:

PX(φ) ≥ sup

{
hη(f ) +

∫
φ dη : η ∈ IX

}
. (8)



848 V. Horita, K. Oliveira

In particular, if IX contains some equilibrium state then the equality holds in (8), and
PX(φ) = P (φ).

In the next lemma, we prove that it is possible to estimate the pressure of H as the limits
of the pressure of the set H with respect to the cover by hyperbolic cylinders U . Here, we
follow [14] (see Theorem 11.1).

Lemma 3.7 If U k is the cover of H by cylinders U ∈ Ri
h for i ≥ k, then the pressure of H

is given by

PH (φ) = lim
k→+∞

PH (φ, U k).

Proof Fix a finite open cover W of �. If V is a cover of H with diameter less or equal to the
Lebesgue number of W , then for every element V ∈ V there exists an element W = W(V )

such V ⊂ W .
In particular, every cylinder V n = V1 ∩ f −1(V2) ∩ . . . ∩ f −n+1(Vn) of length n of Vn is

contained in some element

Wn(V n) = W(V1) ∩ f −1(W(V2)) ∩ . . . ∩ f −n+1(W(Vn))

of Wn. Thus, given G a cover of H by elements of
⋃

n≥N Vn, we may consider the corre-
sponding cover F (G) of elements in

⋃
n≥N Wn. Given W ∈ W , define

κW = sup{|φ(x) − φ(y)|;x, y ∈ W }
and

κW = sup
W∈W

κW .

Observe that if G is a cover of H by elements of
⋃

n≥N Vn then:

∑

W∈F (G)

exp(Sn(W)φ(W) − αn(W)) ≤
∑

V ∈G

exp(Sn(V )φ(V ) − (α − κ(V))n(V )).

Taking the infimum over the covers G of H in V such that n(U) ≥ N for all V ∈ G , we have
that:

mH (φ,α, W,N) ≤ mH(φ,α − κ(W), V,N),

and consequently

mH(φ,α, W) ≤ mH (φ,α − κ(W), V).

Thus, given α0, if mH(φ,α0, W) = +∞ then mH (φ,α0 − κ(W), V) = +∞. Hence

PH (φ, V) ≥ α0 − κ(W).

Taking the supremum of all α0 such that mH(φ,α0, W) = +∞, we have

PH (φ, V) ≥ PH (φ, W) − κ(W). (9)

Now, we are in condition to prove the statement in lemma. First, observe that the conti-
nuity of φ implies that κ(W) → 0 when diam(W) → 0.
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Fix a sequence W n such that PH(φ, W n) → PH(φ) and diam W n → 0. Since U k is a
cover by hyperbolic cylinders, we have by Lemma 3.4 that the diameter of the cover U k

is bounded by e−ck , for some constant K . In particular, we have that diam(U k) → 0 when
k → ∞. Then, we may choose k(n) such the diameter of U k(n) is less than the Lebesgue
number of W n. Thus, by (9) we have that:

PH(φ, U k(n)) ≥ PH (φ, Wn) − κ(W n).

Since diam W n → 0 when n goes to infinity, we have that limn→∞ κ(W n) = 0. Then:

PH (φ) = lim
n→∞PH (φ, W n) ≤ lim

n→∞PH (φ, U k(n)) + κ(W n) = PH(φ).

This finishes the proof. �

Now, we prove that under assumption (A2) the complement of H in � can not carry any
equilibrium measure. To prove this we need two auxiliaries lemmas. The first one is:

Lemma 3.8 Let M be a compact manifold of dimension d . There exists a sequence (Tk)k of
finite triangulations of M and there exist positive constants K3 and K4 such that diam(Tk) ≤
K32−k and, given A ≥ 1, any set E ⊂ M such that diam(E) ≤ Adiam(Tk) intersects at most
K4A

d atoms of Tk .

Proof See [13, Lemma 6.5]. �

Let (Tk)k≥1 be as in the previous lemma and, for each j ≥ 1, denote

T �,j

k = {
T0 ∩ f −�(T1) ∩ . . . ∩ f −�(j−1)(Tj−1) : Ti ∈ Tk for 0 ≤ i < j

}
.

The crucial estimate in the proof that PH (φ) > P�\H (φ) (see Corollary 3.10 below) is given
in the next lemma.

Lemma 3.9 Given �, j , and k natural numbers, there exists a family G�,j,k ⊂ T �,j

k such that:

1. for every L, the union ∪j≥LG�,j,k covers the set � \ H ;
2. there exist k0(�), constant P < P(φ), and a sequence γk that converges to zero, such that

for all L big enough, if k ≥ k0(�)

∑

j≥L

∑

G∈G�,j,k

eS�j φ(G) < e(P l+logK4+γkl)L (10)

Proof We define G�,j,k as the family of all elements of T �,j

k that intersect some element
Q ∈ Qn(c) such that �(j − 1) ≤ n < �j . Since for every �, j and k the set T �,j

k covers M ,
given any L ≥ 1, the union of G�,j,k over all j ≥ L covers � \ H , as stated in Part 1.

Now we claim that, for large k and j , there are at most K
j

4 ωd�j #Tk elements of T �,j

k that
intersect any given Q = Q(i0, . . . , in−1) as before. Indeed, let

T0 ∩ f −�(T1) ∩ . . . ∩ f −�(j−1)(Tj−1) ∈ T �,j

k

be any such element. Then, Ts ∩ f −�(Ts+1) intersects Q(is�, . . . , i(s+1)�−1) for every s = 0,
1, . . . , j − 2. Condition (A1) implies that f � is injective on a neighborhood of any element
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of R� and Lemma 3.8 gives that the diameter of Tk goes to zero when k → ∞. So, taking
k larger than some function k0(�), we can ensure that f −�(Ts+1) has exactly one connected
component, that we denote Cs+1, that intersects the neighborhood of radius diam(Tk) around
Q(is�, . . . , i(s+1)�−1). By the definition of ω, we have that ‖Df −�‖ ≤ ω�, and so

diam(Cs+1) ≤ ω� diam(Ts+1) ≤ ω� diam(Tk).

Then, by Lemma 3.8, Cs+1 intersects at most K4ω
�d atoms of Tk . Applying this argument,

successively, to s = j − 2, . . . ,1,0, we conclude that there are at most #Tk

(
K4ω

�d)j−1 se-
quences (T0, . . . , Tj−1) as we have been considering.

Now, we obtain inequality (10) in Part 2. Define C = supx∈� max0≤i≤l−1 eSiφ(x). We have

eS�j φ(Q) ≤ CeSnφ(Q). (11)

Let (γk)k be the sequence of real numbers defined by

γk = log sup
d(x,y)<1/k

eφ(x)

eφ(y)
.

Note that limγk = 0. Given G ∈ G�,k,j that intersects Q ∈ Qn(c) with �(j − 1) ≤ n < �j , we
have

eS�j φ(G) ≤ eγk�j eS�j φ(Q).

Using the estimate on the number of elements of G�,k,j obtained above, we have

∑

G∈G�,j,k

eS�j φ(G) ≤
�j−1∑

n=�(j−1)

∑

Q∈Qn(c)

#TkK
j

4 ωd�j eγk�j eS�j φ(Q).

It follows from (11) and hypothesis (A2) that

∑

G∈G�,j,k

eS�j φ(G) ≤
�j−1∑

n=�(j−1)

∑

Q∈Qn(c)

C#TkK
j

4 ωd�j eγk�j eSnφ(Q)

≤
�j−1∑

n=�(j−1)

C#TkK
j

4 ωd�j eγk�j ec1n

≤ �C#TkK
j

4 ωd�j eγk�j ec1�j .

Thus, taking C(�) = �C#Tk , we have

∑

j≥L

∑

G∈G�,j,k

eS�j φ(G) ≤
∑

j≥L

C(l)e(logK4+(d logω+c1)�+γk�)j .

Since by hypothesis (A2) we have that c1 < P(φ) − d logω, it is possible to take P such
that d logω + c1 < P < P(φ) and for L big enough and k > k0(�) the inequality (10) holds.
This finish the proof of the lemma. �

Corollary 3.10 P�\H (φ) < P (φ).
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Proof Here one uses the estimate obtained in the Part 2 of Lemma 3.9 to calculate the
pressure of φ with respect to f �, and the fact that PH (S�φ,f �) = �PH (φ,f ). By (7),

m�\H (f �, Slφ,α, Tk,L) ≤
∑

j≥L

∑

G∈G�,j,k

e−αj+S�j φ(G).

For L big enough and k > k0(�), the inequality (10) gives some number P < P(φ) such that

m�\H (f �, Slφ,α, Tk,L) ≤ e(−α+P�+logK4+ck�)L.

This imply that

P�\H (f �, S�φ, Tk) ≤ (P + ck)� + logK4.

Taking the limit when k → ∞, and recalling that diam Tk goes to zero, we have that
P�\H (f �, S�φ) ≤ P� + logK4. This gives that,

P�\H (f,φ) ≤ P + 1

�
logK4.

Taking the limit when � goes to infinity, we have that P�\H (φ) ≤ P < P(φ). �

Corollary 3.11 P (φ) = PH (φ).

Proof By the Theorem 11.2 of [14], P (φ) = sup{PH (φ),P�\H (φ)} and by Corollary 3.10
we have that P�\H (φ) < P (φ). �

3.3 Conformal Measures

The Jacobian of a measure η with respect to f is the (essentially unique) function Jηf

satisfying

η(f (A)) =
∫

A

Jηf dη,

for any measurable set A ⊂ � such that f |A is injective. In other words, the Jacobian is
defined by Jηf = d(f∗η)/dη. Jacobians need not exist, in general, but if f is at most
countable-to-one then Jηf does exist for every f -invariant measure.

Definition 3.12 We call conformal measure associated to φ and λ, any measure ν such that
Jνf = λe−φ .

Now, we introduce a helpful tool in order to produce a conformal measure. The transfer
operator Lφ : C0(�) → C0(�) is defined by

Lφg(x) =
∑

f (y)=x

eφ(y)g(y). (12)

Definition 3.13 The spectral radius of Lφ is the number

r(Lφ) = lim sup‖Ln
φ‖ 1

n .
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Observe that Lφ is positive and r(Lφ) = lim sup‖Ln
φ1‖ 1

n . We prove that:

Lemma 3.14 There exists some conformal measure associated to φ and r(Lφ).

Proof Fix λ = r(Lφ). Let K = {g ∈ C0(�);ming(x) > 0} be the cone of positive functions
and

V = {λϕ − Lφ(ϕ) : ϕ ∈ C0(�)}.
Clearly, V is a linear subspace and K is a open convex set. We claim that V and K are
disjoint. Indeed, suppose ψ = λϕ − Lφ(ϕ) belongs to K , for some ϕ ∈ C0(�). There exists
δ > 0 such that δ max(−ϕ) ≤ minψ . Then

Lφ(−ϕ) = −λϕ + ψ ≥ (λ + δ)(−ϕ).

Since Lφ is a positive operator, it follows that Ln
φ(−ϕ) ≥ (λ+ δ)n(−ϕ) for every n ≥ 1. This

implies that the spectral radius of Lφ is at least λ + δ, contradicting the definition of λ. This
contradiction proves that K ∩V = ∅, as we claimed. Then, by Mazur’s Separation Theorem
(see [5, Proposition 7.2]), there exists some continuous linear functional ν : C0(�) → R

such that
∫

ϕ dν > 0 for every ϕ ∈ K and
∫

ϕ dν = 0 for every ϕ ∈ V.

The first property means (by Riez-Markov Theorem) that the restriction of ν to continuous
functions is a positive measure and so, up to normalization, we may suppose it is a proba-
bility.

Now, we show that ν is conformal. Indeed, let A be any measurable set such that f | A

is injective. Observe that

Lφ(e−φχA)(x) =
∑

f (y)=x

eφ(y) e−φ(y)χA(y) =
∑

f (y)=x

χA(y).

The last expression is equal to χf (A)(x), because f | A is injective. Hence,
∫

λe−φχA dν =
∫

Lφ(e−φχA)dν = ν(f (A)).

Thus,

ν(f (A)) =
∫

A

λe−φdν,

which proves the lemma. �

Remark 3.15 It is straightforward to check that if the Jacobian of ν with respect to f is
Jνf = λe−φ , then the Jacobian of ν with respect to f n is Jνf

n = λne−Snφ , for every n ∈ N.

Proposition 3.16 Let φ be a Hölder continuous map and ν conformal measure for φ. If
P = log r(Lφ), there exists K5 > 0 such that for any Rn ∈ Rn

h and x ∈ Rn then

K−1
5 ≤ ν

(
Rn(x)

)

exp
(−nP + Snφ(x)

) ≤ K5 (13)
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Proof By Remark 3.15, the Jacobian of f n is given by Jνf
n = enP−Snφ . Hence, if Rn =

R(i0, . . . , in−1), by hypothesis (A1)

ν(f (Rin−1)) = ν(f n(Rn)) =
∫

Rn

Jνf
ndν =

∫

Rn

enP−Snφ(x) dν(x).

By Corollary 3.5, there exists K2 not depending on n such for every x, y ∈ Rn

K−1
2 Jνf

n(y) ≤ Jνf
n(x) ≤ K2Jνf

n(y).

It follows that

K−1
2 ν(f (Rin−1)) ≤ ν(Rn)

e−Pn+Snφ(x)
≤ K2ν(f (Rin−1))

for any x ∈ Rn.
We observe that ν(f (Ri)) > 0 for every i = 1, . . . ,m. Indeed, consider any i fixed.

Since f is transitive, there exists ki such that � ⊂ R1 ∪ . . . ∪ Rm ⊂ f ki (Ri) and, con-
sequently, f ki (Ri) has total ν-measure. So, using the fact that ν has a Jacobian, it fol-
lows that ν(f (Ri)) > 0 is also positive, as claimed. To finish the proof, just take K5 =
K2(infν(f (Ri)))

−1. �

Lemma 3.17 If φ be any Hölder continuous potential for f , then

log r(Lφ) ≥ PH(φ). (14)

Proof If P = log r(Lφ), by Proposition 3.16 we have that for every n and x ∈ Rn ∈ Rn
h,

K−1
5 ν(Rn) ≤ exp(Snφ(x) − Pn) ≤ K5ν(Rn).

In view of Lemma 3.7, we just need to prove that P ≥ PH (φ, U k), where U k is the cover
of H by hyperbolic cylinders with length bigger than k. In fact, given a cover Gn of H by
hyperbolic cylinders, by Besicovich’s covering lemma considering a subcover if necessary,
we may suppose that the elements of Gn overlap at most L times, L depending only of the
manifold M . In other words, we may decompose Gn = G 1

n ∪ . . . ∪ GL
n such that Gi

n ∩ Gj
n = ∅,

for all i �= j . Summing the inequalities above over all Rn ∈ Gn, we get

0 < K−1
5 ν(H) ≤

∑

U∈Gn

exp(Sn(U)φ(U) − Pn(U))

≤ K5

L∑

i=1

ν

( ⋃

R∈Gi
n

R

)
≤ K5Lν(�) < +∞. (15)

Thus, we have that the pressure PH (φ, U k) is less or equal to P . Taking the limit when k

goes to infinity, we finish the proof. �

Definition 3.18 We say that a probability ν is an f -expanding measure if ν(H) = 1.

Lemma 3.19 If the probability ν is a conformal measure associated to the potential φ that
satisfy (A2), then ν is an f -expanding measure.
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Proof Observe that by Borel-Cantelli’s Lemma, we just need to prove that

∞∑

n=0

∑

C∈Qn(c)

ν(C) < ∞. (16)

It follows from Lemma 3.14 that Jνf
n(x) = ePn−Snφ(x). For every n-cylinder C =

R(i0, . . . , in−1) we have

1 ≥ ν(f n(C)) =
∫

C

ePn−Snφ(x) dν ≥ ePn inf
x∈C

e−Sn(x)ν(C).

Then,

ν(C) ≤ e−Pn+Snφ(C).

By assumption (A2) we have for c1 < P(φ) − d logω that

∑

C∈Qn(c)

ν(C) ≤ e(−P+c1)n.

By Lemma 3.17, we have that P ≥ PH(φ). Since PH (φ) = P (φ) by Corollary 3.11 and
c1 < P(φ) by hypothesis (A2), we have that

∞∑

n=0

∑

C∈Qn(c)

ν(C) <

∞∑

n=0

e(−P(φ)+c1)n < ∞.

The proof of lemma is complete. �

Corollary 3.20 The pressure P (φ) is equal to log r(Lφ).

Proof We just need to recall that if P = log r(Lφ), using that ν(H) > 0 in (15) we get
that P = PH(φ, Uk). Taking the limit when k goes to infinity and observing that by Corol-
lary 3.11 we have that PH (φ) = P (φ), we finish the proof. �

Corollary 3.21 The support of ν coincides with the closure of H .

Proof Observe that by Lemma 3.19 we have that ν(H) = 1 and this imply that the support
of ν is contained in H . Conversely, take any x ∈ H and observe that by the definition of
H , there exists a sequence ni = ni(x) ∈ N such that the cylinders Rni (x) are hyperbolic. By
Proposition 3.16, ν(Rni (x)) ≥ exp(Snφ(x) − Pn)K−1

5 > 0. Since the diameters of Rni (x)

converge to zero, we have that any neighborhood of x has positive ν measure and, thus, H

is contained in support of ν. �

4 Proof of Theorem 2.1

To construct an equilibrium measure absolutely continuous with respect to ν, we define an
map F from f by

F : H → H, F(x) = f n1(x)(x), (17)
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where n1(x) is defined as the smallest number k such that x ∈ Rk and Rk is a hyperbolic
cylinder. In this section, nk(x) denotes the k-th hyperbolic time for x.

Note that F sends any of such cylinders (intersected with H ) injectively onto its image.
More generally, for each k ≥ 1 and x ∈ H there is a largest cylinder containing x such that
Fk is injective on that cylinder. We denote by F−k

x the corresponding inverse branch of Fk .

Lemma 4.1 For every y, z in the domain of F−1
x

d(F−1
x (y),F−1

x (z)) ≤ e−cn1(x)d(y, z)

Moreover, there exists K6 > 0 depending only on f such for every k ≥ 1, every inverse
branch F−k

x , and every measurable subsets A, B of the domain of F−k
x with ν(B) > 0,

K−1
6

ν(A)

ν(B)
≤ ν(F−k

x (A))

ν(F−k
x (B))

≤ K6
ν(A)

ν(B)
(18)

Proof The first item is a direct consequence of Lemma 3.4. For the second item, we observe
that by the definition of Jacobian:

ν(A)

ν(B)
=

∫
F−k

x (A)
eSnk(x)φ(x) dν

∫
F−k

x (B)
eSnk(x)φ(x) dν

.

On the other hand, by Corollary 3.5 we have that there exists K2 > 0 such that K−1
2 ≤

e
Snk

φ(x)

e
Snk

φ(y) ≤ K2, for all x, y in the domain of F−k
x . Replacing in the expression above, we

finish the proof. �

We point out that F is not necessarily surjective. Denote by HF the set

HF =
∞⋂

i=0

F i(H).

Since f n1(x) sends Rn1(x)(x) onto a rectangle, we have that

HF = (
Ra1 ∪ . . . ∪ Ras

) ∩ H,

for some aj ∈ {1, . . . ,m}. Indeed, if x ∈ HF , there exists a sequence of hyperbolic cylinders
Rni such that x ∈ f ni (Rni ). Observe that if Rn is a n-cylinder such that f n(Rn)∩ intRi �= ∅,
we have that Ri = f n(Rn). Thus, x ∈ Raj

for some rectangle Raj
such that Raj

∩ H ⊂ HF .
We claim that for every pair Raj

and Rk , we may find a n-hyperbolic cylinder
R(k, i1, . . . , in−2, aj ) ⊂ Rk . In fact, by transitivity, we may consider n0 bigger enough in
such way that f n0(Rk) contains R1 ∪ . . .∪Rm. Since Raj

∩HF is non-empty, we may find n

as big as we want and a (n − n0)-hyperbolic cylinder R(in0 , . . . , in−2, aj ). Since the deriva-
tive of ‖Df −n0‖ is bounded from above, taking n big enough, and choosing R(k, i1, . . . , in0)

a non-empty cylinder in Rk , we have that R(k, i1, . . . , in0 , . . . , in−2, aj ) is a hyperbolic time.
Therefore, given Rai

and Raj
, we may define:

lij = min{k ∈ N; such that Fk(Rai
∩ HF ) ∩ Raj

�= ∅}.
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Consider

l = sup{lij ;1 ≤ i, j ≤ s}.
In particular, for every i, j there exists k ≤ l such that Fk(Rai

) ∩ Raj
�= ∅. Observe that

ν(Rj ) > 0 for all j ∈ {1,2, . . . ,m}. Define νF by

νF (A) = ν(A ∩ HF ).

We recall that the push-forward of ν with respect to Fn is the measure defined by Fn
� ν(A) =

ν(F−n(A)).

Lemma 4.2 There exists a constant K7 > 0 such that for i, j ∈ {1,2, . . . , s} and k ∈ N,

F k
� ν(Rai

) ≤ K7F
k+lij
� ν(Raj

).

Proof Given x ∈ F−k(Rai
) and A ⊂ Rai

, we consider the inverse branch F−k
x . By

Lemma 4.1 above

K−1
6

ν(A)

ν(Rai
)

≤ ν
(
F−k

x (A)
)

ν
(
F−k

x (Rai
)
) ≤ K6

ν(A)

ν(Rai
)

(19)

and adding over all inverse branches

K−1
6

ν(A)

ν(Rai
)

≤ Fk
� ν(A)

F k
� ν(Rai

)
≤ K6

ν(A)

ν(Rai
)
.

By definition, F lij send a lij -cylinder Rij ⊂ Rai
onto Raj

. In particular,

Fk
� ν(Rij ) ≤ F

k+lij
� ν(Raj

).

Taking A = Rij in the (19) above, we obtain that

Fk
� ν(Rai

) ≤ K7F
k+lij
� ν(Raj

),

for K7 = supi,j K6ν(Raj
)/ν(Rij ) and this finish the proof. �

Corollary 4.3 There exists K8 > 0 such that 1
n

∑n−1
k=0 Fk

� ν(Raj
) > K8 > 0 for n ∈ N and

j ∈ {1,2, . . . , s}.

Proof By the lemma above, given j ∈ {1,2, . . . , s}

1

n

n−1∑

k=0

Fk
� ν(Rai

) ≤ K7
1

n

n−1∑

k=0

F
k+lij
� ν(Raj

)

= K7
1

n

n+lij −1∑

k=0

Fk
� ν(Raj

) − K7
1

n

lij −1∑

k=0

Fk
� ν(Raj

).

Summing for i ∈ {1,2, . . . , s} and taking n big enough,

s∑

i=1

1

n

n−1∑

k=0

Fk
� ν(Rai

) ≤ sK5
1

n

n+l−1∑

k=0

Fk
� ν(Raj

) − sK5
1

n

lij −1∑

k=0

Fk
� ν(Raj

).
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Since the last term in the left side of the expression above goes to zero when n goes to
infinity and

s∑

i=1

1

n

n−1∑

k=0

Fk
� ν(Rai

) = νF (HF ) = 1,

we finish the proof. �

Corollary 4.4 Every accumulation point μF of the sequence

μn = 1

n

n−1∑

k=0

Fk
� νF

is an F -invariant measure absolutely continuous with respect to νF , with density h =
dμF /dνF bounded from zero and from infinity.

Proof It follows from (18) that

K−1
9 ν(A) ≤ 1

n

n−1∑

k=0

Fk
� ν(A) ≤ K9ν(A),

for some constant K9 and every measurable set A ⊂ Raj
. Indeed, observe that ν(F−k(A)) is

the sum of the terms ν(G(A)) over all inverse branches G = Gk : Raj
→ R(i0, . . . , ink−2, aj )

of Fk and the same for B = Raj
. As in the proof of Lemma 4.1, considering K7 =

infi=1,...,m ν(Ri) > 0, summing over all inverse branches and observing the (18):

K−1
2 ν(A) ≤

∑n−1
k=0 Fk

� ν(A)
∑n−1

k=0 Fk
� ν(B)

≤ K2K
−1
7 ν(A),

which implies that K−1
2 K8ν(A) ≤ 1

n

∑n−1
k=0 ν(F−k(A)) ≤ K2K

−1
7 ν(A). We may take for

K9 = max{K1K
−1
7 ,K2K

−1
8 }. From this, follows immediately that for every measurable set

A ⊂ HF

K−1
9 ν(A) ≤ μn(A) ≤ K9ν(A) (20)

and from a well-known fact from measure theory it follows that any accumulation point μF

of μn satisfy same inequalities. These implies that μF is absolutely continuous with respect
to ν and its density h = dμF

dνF
is bounded from below and above in H by uniform constants. �

Define Hn as the set of points whose first hyperbolic time is equal to n and H0 =
R1 ∪ . . . ∪ Rm. If we define a measure μφ by

μφ(A) =
∞∑

n=0

∑

i>n

μF (f −n(A) ∩ Hi), (21)

for every measurable set A ⊂ R1 ∪ R2 ∪ . . . ∪ Rm. Now, we prove that

Lemma 4.5 The measure μφ is finite, f -invariant, absolutely continuous with respect to ν,
with density bounded from zero and infinity. In particular, μ is expanding with integrable
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first hyperbolic time and there exists K10 > 0 such that for every n and every x ∈ Rn ∈ Rn
h,

K−1
10 ≤ μφ(Rn)

exp(Snφ(x) − P (φ)n)
≤ K10. (22)

Proof Invariance: If A is any Borel set, by the definition of μφ

μφ(f −1(A)) =
∞∑

n=0

∑

i>n

μF (f −(n+1)(A) ∩ Hi) =
∞∑

n=1

∑

i≥n

μF (f −n(A) ∩ Hi).

We may write the above expression as

μφ(f −1(A)) =
∞∑

n=1

∑

i>n

μF (f −n(A) ∩ Hi) +
∞∑

n=1

μF (f −n(A) ∩ Hn).

Observe that since {Hi} is a partition mod 0 of H :

μF (A) =
∑

i≥1

μF (A ∩ Hi)

and using that μF is F -invariant, we have that

μF (A) = μF (F−1(A)) =
∞∑

n=1

μF (f −n(A) ∩ Hn).

Therefore,

μφ(f −1(A)) =
∞∑

n=1

∑

i>n

μF (f −n(A) ∩ Hi) +
∞∑

i=1

μF (A ∩ Hi) = μφ(A).

and this proves that μφ is f -invariant.

Absolute continuity and bounds for the density: In order to bound the density of μφ

with respect to ν from below, we observe that it follows from the definition of μφ that for
any A ⊂ HF , by Corollary 4.4 we have

K−1
9 ν(A) ≤ μF (A) ≤ μφ(A) =

∞∑

n=0

μF (f −n(A) ∩ Ln),

where Ln = ⋃
i>n Hi .

In general, if A ⊂ Ri and Ri ∩ HF = ∅, by the transitivity of f we may choose
n0 big enough such that given any rectangle Raj

, there exists a n0-cylinder Rn0 =
R(i0, . . . , in0−1) ⊂ Raj

such that f n0−1(Rn0) = Ri . Since Ri ∩ HF = ∅, we have that Rn0 is
not a hyperbolic cylinder. Take k0 = max{k < n0;R(i0, . . . , ik−1) is a hyperbolic cylinder}.
Observe that k0 < n0 and Rn0−k0 = R(ik0 , . . . , in0−1) ∩ H is contained in HF , since
Fn0−k0(HF ) ⊂ HF . On the other hand, by the definition of k0, we have that Rn0−k0 ⊂ Ln0−k0 .
As a consequence, we define B = f −(n0−k0)(A) ∩ Rn0−k0 and observe that

μφ(A) ≥ μF (f −(n0−k0)(A) ∩ Ln0−k0) ≥ μF (B) ≥ K−1
9 ν(B)
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Since ν(A)/ν(B) is bounded from above by a constant that depends only on n0, φ and f ,
we get the bound from below. To obtain the bound from above, we observe that by definition
of μφ

μφ(A) =
∞∑

n=0

μF (f −n(A) ∩ Ln) ≤ K9

∞∑

n=0

ν(f −n(A) ∩ Ln),

where we used in the last inequality that μF has density with respect to ν bounded from
above. To finish, we observe that Ln ⊂ ⋃

C∈Qn(c) C. If C ∈ Qn(c), using the Jacobian For-
mula

ν(A) ≥ ν(f n(f −n(A) ∩ C)) ≥ ν(f −n(A) ∩ C)eP(φ)n−Sn(C),

or

ν(f −n(A) ∩ C) ≤ e−P(φ)n+Sn(C)ν(A).

As a consequence

ν(f −n(A) ∩ Ln) ≤ ν(A)
∑

C∈Qn(c)

e−P(φ)n+Sn(C) ≤ e−d logωnν(A),

by Hypothesis (A2). Adding over n, we get that μφ(A) ≤ Kν(A) for K = ∑∞
n=1 e−dn logω

< ∞.

Finiteness: By condition (A2) we have that

∫
n1dν =

∞∑

n=0

ν(Ln) ≤
∞∑

n=0

∑

C∈Qn(c)

ν(C) ≤
∑

C∈Qn(c)

e−P(φ)n+Sn(C) < ∞.

Since the density of μφ with respect to ν is bounded from above and μφ(M) =∫
n1(x)dμφ(x), we have that μφ(�) < +∞. �

Lemma 4.6 If η is an invariant expanding measure with integrable first hyperbolic time
then the sequence of hyperbolic times is non-lacunary at η-almost every point.

Proof See [13, Proposition 3.8]. �

Corollary 4.7 For μφ almost every point in M , there exists a sequence Kn(x) such that for
all n ≥ 1 we have that

K−1
n (x) ≤ μφ(Rn(x))

eSn(x)−nP (φ)
≤ Kn(x), (23)

and limn→∞ 1
n

logKn(x) = 0.

Proof By Lemma 4.6 above, for μφ almost every x ∈ H , the sequence n1(x) < n2(x) < . . .

of hyperbolic times of x is non-lacunary. We set n0(x) = 1 for all x and given n ≥ 1, if
nk(x) ≤ n ≤ nk+1(x) we define

Mn(x) = max

{
sup

1≤l≤nk+1−nk

e−l maxφ+P(φ)l,K5

}
,
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where K5 is the constant obtained at Proposition 3.16. It is clear that Mn(x) has subexpo-
nential growth:

lim
n→∞

1

n
logMn(x) ≤ lim

k→∞
1

nk(x)

(
nk+1(x) − nk(x)

)(
P (φ) − maxφ

) = 0.

Observe that since n ≥ nk , we have that μφ(Rn(x)) ≤ μφ(Rnk (x)). Using that Snφ(x) =
Snk

φ(x) + Sn−nk
φ(f nk (x)), we obtain

μφ(Rnk (x))e−Sn−nk
φ(f nk (x))+(n−nk)P (φ)

eSnk
(x)−nkP (φ)

≥ μ(Rn(x))

eSn(x)−nP (φ)
.

Since Mn(x) ≥ e−Sn−nk
φ(f nk (x))+(n−nk)P (φ), by Proposition 3.16 we have that

K5Mn(x) ≥ μ(Rn(x))

eSn(x)−nP (φ)
.

In a complete similar approach using Rnk+1(x), we get that

μ(Rn(x))

eSn(x)−nP (φ)
≥ (K5Mn(x))−1.

We just define Kn(x) = K5Mn(x) to complete the proof. �

Corollary 4.8
If μφ is the non-lacunary Gibbs measure constructed in Lemma 4.5, then

hμφ
(f ) +

∫
φ dμφ = P (φ).

Proof Using the Ergodic Decomposition Theorem (see [17, p. 153]), we may assume that
μφ is ergodic. By Shannon-McMillan-Breiman Theorem (see [17, p. 93]) and using (23)
above, for μφ almost every x:

hμφ
(f, R) = lim

n→∞− 1

n
logμφ(Rn(x))

≥ lim
n→∞− 1

n
logKn(x) + lim

n→∞− 1

n
Snφ(x) + P (φ).

Taking a generic point x, observing that by Birkhoff Ergodic Theorem:

hμφ
(f ) ≥ hμφ

(f, R) ≥ −
∫

φ dμφ + P (φ).

The opposite inequality follows from the variational principle. This finish the proof of
the corollary. �

The proof of Theorem 2.1 is complete.
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5 Examples

In this section, we produce some examples that satisfy conditions of Theorem 2.1. For
sake of simplicity, we begin describing a one-dimensional example. We do not use the one-
dimension character here and this example can be easily extended to higher dimensions.

Example 5.1 (Non-uniformly expanding repellers) Let R1,R2, . . . ,Rm be a collection of
closed intervals in [0,1] two-by-two disjoint. Take fi : Ri → [0,1] any C1 diffeomorphism.
We set δi = minx∈Ri

|f ′(x)| and assume that

• There exists p < m such that δi > 1 for i = 1,2, . . . , p (expanding regions);
• δi > 0 for all i ∈ {1,2, . . . ,m} (no critical points).

Consider f : R1 ∪ . . .∪Rm → [0,1] defined by f (x) = fi(x), if x ∈ Ri . We restrict f to the
limit set � defined by

� =
∞⋂

i=0

f −i (R1 ∪ . . . ∪ Rm).

It is easy to check that for all cylinders R(i0, . . . , in−1),

ψn(R(i0, . . . , in−1)) ≤
n−1∑

j=0

log δij .

In particular, it is possible to estimate from above the number of cylinders in Qn(c).
Indeed, we may find constants γ and c > 0, depending only on (δ1, δ2, . . . , δm). Note if we
fix δi for i = 1,2, . . . , p and take δi close to 1 for i = p + 1, . . . ,m, the constant γ could be
chosen close to zero.

#{0 ≤ i ≤ n − 1;f i(x) ∈ R1 ∪ . . . ∪ Rp} > γn,

then ψn(R
n(x)) > c. In particular, the rate of exponential increase of the number of cylinders

in Qn(c) is bounded from above by some constant P (γ ) < logm (see [13], Lemma 3.1
for a detailed proof). Taken δi close to one for i = p + 1, . . . ,m, we have that P (γ ) <

logm − logω.

Observe that the topological entropy of f is greater or equal to logm. In particular, the
observation above mean that

#{C ∈ Qn(c)} ≤ eP(γ )n

and P (γ ) < P (0) = htop(f ). Thus, the potential φ = 0 satisfy (A2). It is immediate to check
using the continuity of P (φ) and the equation above, that any potential close enough to zero
satisfy (A2) as well.

Example 5.2 (Hopf-like bifurcations) This example is more involved and it will appear with
detailed proofs in another work (see [7]). We describe the potentials and transformations
satisfying (A1) and (A2) that arise from applied sciences. Hopf bifurcations occur in the
Hodgkin-Huxley model for nerve membrane, the Selkov model of glycolysis, the Belousov-
Zhabotinsky reaction, among other natural phenomena. Let us describe this family of maps:
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Let G : M → M be a linear endomorphism on the 2-dimensional torus M = T
2 with two

complex conjugate eigenvalues σe±iα with σ > 3. We assume the non-resonance condition
kα /∈ 2πZ for k = 1,2,3,4. In cylindrical coordinates (ρ, θ) defined close to (0,0), we have

G(ρ, θ) = (σρ, θ + α).

Similarly to [9, Sect. 1.1] we derive from G a family of endomorphisms (f̂μ)μ∈[−1,1]
going through a Hopf bifurcation at μ = 0. We consider a C∞ real valued function �(μ,w)

defined on [−1,1]2 such that, for some C0 > 0 and some small δ0 > 0,

(C1) �(μ,0) = 1 − μ ≤ �(μ,w) for all w ≥ 0.
(C2) �(μ,w) = σ when w ≥ δ0.
(C3) 0 < ∂w�(μ,w) ≤ C0/δ0 when 0 ≤ w < δ0.
(C4) There exist σ1 ∈ (1, σ ) and δ1 ∈ (0, δ0) such that �(μ,w) > σ1 for all w ≥ δ1 and

∂w�(μ,w) ≥ ∂w�(μ,0) for all w ∈ [0, δ1].
Since G is an expanding endomorphism, there exist a Markov partition R = {R1, . . . ,Rm}

of M for G. Let us consider that the origin is contained in the interior of some rectangle
of R. We take δ0 > 0 to be small enough so that the domain {(ρ, θ) : ρ2 ≤ δ0} is contained
in a small open neighborhood V ⊂ M of the origin, such that the closure of V is itself
contained in the interior of R.

We obtain an 1-parameter family f̂μ of endomorphisms coinciding with G outside V by
deforming G inside V in such a way that the restriction to V in cylindrical coordinates is
given by

f̂μ(ρ, θ) = (�(μ,ρ2)ρ, θ + α). (24)

Note that the origin is a fixed point of f̂μ for all μ. In [9] the authors prove that this fixed
point goes through a generic Hopf bifurcation at μ = 0: for μ > 0 the fixed point becomes
an attractor. Moreover, it follows that any family (fμ)μ C5-close to (f̂μ)μ has a unique
curve of fixed points (pμ)μ close to the origin, and these fixed points also go through a Hopf
bifurcation at some parameter μ∗ (depending continuously of the family) close to zero: pμ

change from repelling to attracting fixed point when μ goes through μ∗.
The complement �μ of the basin of attraction of the attracting point pμ is a repeller. It

follows from results of Horita and Viana in [8] that the limit capacity (and then the Hausdorff
dimension) of �μ is strictly less than 2. In [7], we prove that if (fμ)μ is a family of endomor-
phism in a C5-neighborhood of (f̂μ)μ. Then, (fμ)μ satisfy condition (A1) and for μ close
to μ∗, we may find an open interval (γ 0

μ, γ 1
μ) such that for every γ ∈ (γ 0

μ, γ 1
μ), the function

φ(x) = −γ log |detDf (x)| satisfy (A2) and, as a consequence, has an non-lacunary Gibbs
measure.
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